Integrated Ultrasound-Enrichment and Machine Learning in Colorimetric Lateral Flow Assay for Accurate and Sensitive Clinical Alzheimer's Biomarker Diagnosis

比色横向流动分析中集成超声富集和机器学习,实现准确、灵敏的临床阿尔茨海默病生物标志物诊断

阅读:6
作者:Shuqing Wang, Yan Zhu, Zhongzeng Zhou, Yong Luo, Yan Huang, Yibiao Liu, Tailin Xu

Abstract

The colloidal gold nanoparticle (AuNP)-based colorimetric lateral flow assay (LFA) is one of the most promising analytical tools for point-of-care disease diagnosis. However, the low sensitivity and insufficient accuracy still limit its clinical application. In this work, a machine learning (ML)-optimized colorimetric LFA with ultrasound enrichment is developed to achieve the sensitive and accurate detection of tau proteins for early screening of Alzheimer's disease (AD). The LFA device is integrated with a portable ultrasonic actuator to rapidly enrich microparticles using ultrasound, which is essential for sample pre-enrichment to improve the sensitivity, followed by ML algorithms to classify and predict the enhanced colorimetric signals. The results of the undiluted serum sample testing show that the protocol enables efficient classification and accurate quantification of the AD biomarker tau protein concentration with an average classification accuracy of 98.11% and an average prediction accuracy of 99.99%, achieving a limit of detection (LOD) as sensitive as 10.30 pg mL-1. Further point-of-care testing (POCT) of human plasma samples demonstrates the potential use of LFA in clinical trials. Such a reliable lateral flow immunosensor with high precision and superb sensing performance is expected to put LFA in perspective as an AD clinical diagnostic platform.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。