Systematic determination of the peptide acceptor preferences for the human UDP-Gal:glycoprotein-alpha-GalNAc beta 3 galactosyltransferase (T-synthase)

系统地确定人类 UDP-Gal:糖蛋白-α-GalNAc β3 半乳糖基转移酶(T 合酶)的肽受体偏好

阅读:6
作者:Cynthia Perrine, Tongzhong Ju, Richard D Cummings, Thomas A Gerken

Abstract

Mucin-type protein O-glycosylation is initiated by the addition of alpha-GalNAc to Ser/Thr residues of a polypeptide chain. The addition of beta-Gal to GalNAc by the UDP-Gal:glycoprotein-alpha-GalNAc beta 3 galactosyltransferase (T-synthase), forming the Core 1 structure (beta-Gal(1-3)-alpha-GalNAc-O-Ser/Thr), is a common and biologically significant subsequent step in O-glycan biosynthesis. What dictates the sites of Core 1 glycosylation is poorly understood; however, the peptide sequence and neighboring glycosylation effects have been implicated. To systematically address the role of the peptide sequence on the specificity of T-synthase, we used the oriented random glycopeptide: GAGAXXXX(T-O-GalNAc)XXXXAGAG (where X = G, A, P, V, I, F, Y, S, N, D, E, H, R, and K) as a substrate. The Core 1 glycosylated product was isolated on immobilized PNA (Arachis hypogaea) lectin and its composition determined by Edman amino acid sequencing for comparison with the initial substrate composition, from which transferase preferences were obtained. From these studies, elevated preferences for Gly at the +1 position with moderately high preferences for Phe and Tyr in the +3 position relative to the acceptor Thr-O-GalNAc were found. A number of smaller Pro enhancements were also observed. Basic residues, i.e., Lys, Arg, and His, in any position were disfavored, suggesting electrostatic interactions as an additional important component modulating transferase specificity. This work suggests that there are indeed subtle specific and nonspecific protein-targeting sequence motifs for this transferase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。