Fibrinogen/poly(l-lactide-co-caprolactone) copolymer scaffold: A potent adhesive material for urethral tissue regeneration in urethral injury treatment

纤维蛋白原/聚(l-丙交酯-共-己内酯)共聚物支架:用于尿道损伤治疗中尿道组织再生的强效粘合材料

阅读:4
作者:Wei Jiao, Wandong Yu, Yangyun Wang, Jun Zhang, Yang Wang, Hongbing He, Guowei Shi

Abstract

Since a scarcity of sufficient grafting materials, several complications can arise after urothelial defect reconstruction surgery, including severe hypospadias. Accordingly, developing alternative therapies, such as urethral restoration via tissue engineering are needed. In the present study, we developed a potent adhesive and repairing material using fibrinogen-poly(l-lactide-co-caprolactone) copolymer (Fib-PLCL) nanofiber scaffold to achieve effective urethral tissue regeneration after seeding with epithelial cells on the surface. The in vitro result found the Fib-PLCL scaffold promoted the attachment and viability of epithelial cells on their surface. The increased expression levels of cytokeratin and actin filaments were observed in Fib-PLCL scaffold than PLCL scaffold. The in vivo urethral injury repairing potential of Fib-PLCL scaffold was evaluated using a rabbit urethral replacement model. In this study, a urethral defect was surgically excised and replaced with the Fib-PLCL and PLCL scaffolds or autograft. As expected, the animals healed well after surgery in the Fib-PLCL scaffold group, and no significant strictures were identified. As expected, the cellularized Fib/PLCL grafts have induced the luminal epithelialization, urethral smooth muscle cell remodelling, and capillary development all at the same time. Histological analysis revealed that the urothelial integrity in the Fib-PLCL group had progressed to that of a normal urothelium, with enhanced urethral tissue development. Based on the results, the present study suggests that the prepared fibrinogen-PLCL scaffold is more appropriate for urethral defect reconstruction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。