Life without oxygen: gene regulatory responses of the crucian carp (Carassius carassius) heart subjected to chronic anoxia

无氧生活:慢性缺氧条件下鲫鱼心脏的基因调控反应

阅读:4
作者:Kåre-Olav Stensløkken, Stian Ellefsen, Olga Vasieva, Yongxiang Fang, Anthony P Farrell, Lisa Olohan, Jarle Vaage, Göran E Nilsson, Andrew R Cossins

Abstract

Crucian carp are unusual among vertebrates in surviving extended periods in the complete absence of molecular oxygen. During this time cardiac output is maintained though these mechanisms are not well understood. Using a high-density cDNA microarray, we have defined the genome-wide gene expression responses of cardiac tissue after exposing the fish at two temperatures (8 and 13 °C) to one and seven days of anoxia, followed by seven days after restoration to normoxia. At 8 °C, using a false discovery rate of 5%, neither anoxia nor re-oxygenation elicited appreciable changes in gene expression. By contrast, at 13 °C, 777 unique genes responded strongly. Up-regulated genes included those involved in protein turnover, the pentose phosphate pathway and cell morphogenesis while down-regulated gene categories included RNA splicing and transcription. Most genes were affected between one and seven days of anoxia, indicating gene regulation over the medium term but with few early response genes. Re-oxygenation for 7 days was sufficient to completely reverse these responses. Glycolysis displayed more complex responses with anoxia up-regulated transcripts for the key regulatory enzymes, hexokinase and phosphofructokinase, but with down-regulation of most of the non-regulatory genes. This complex pattern of responses in genomic transcription patterns indicates divergent cardiac responses to anoxia, with the transcriptionally driven reprogramming of cardiac function seen at 13 °C being largely completed at 8 °C.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。