β-catenin mediates monocrotaline-induced pulmonary hypertension via glycolysis in rats

β-catenin 通过糖酵解介导大鼠野百合碱诱发的肺动脉高压

阅读:7
作者:Hui Meng, Yan Deng, Juan Liao, Dan-Dan Wu, Li-Xiang Li, Xing Chen, Wei-Fang Lan

Background

Metabolic abnormalities and immune inflammation are deeply involved in pulmonary vascular remodelling and the development of pulmonary hypertension (PH). However, the regulatory mechanisms of glycolysis in macrophages are still elusive. Cumulative evidence indicates that β-catenin plays a crucial role in metabolic reprogramming. This study aimed to investigate the effect of β-catenin on macrophage glycolysis in PH.

Conclusions

Our findings suggest that β-catenin is involved in the development of PH by promoting glycolysis and the inflammatory response in macrophages. Inhibition of β-catenin could improve the progression of PH.

Methods

LPS-induced BMDMs were generated via in vitro experiments. A monocrotaline (MCT)-induced PH rat model was established, and the β-catenin inhibitor XAV939 was administered in vivo. The role of β-catenin in glycolysis was analysed. The degree of pulmonary vascular remodelling was measured.

Results

β-catenin was significantly increased in both in vitro and in vivo models. In LPS-induced BMDMs, β-catenin increased the levels of hexokinase 2 (HK2), phosphofructokinase (PFK), M2-pyruvate kinase (PKM2), lactate dehydrogenase (LDH), and lactate (LA) and the expression of inflammatory cytokines and promoted PASMC proliferation and migration in vitro. XAV939 decreased the level of glycolysis and downregulated the expression of inflammatory cytokines in vivo. MCT promoted pulmonary arterial structural remodelling and right ventricular hypertrophy, and XAV939 alleviated these changes. Conclusions: Our findings suggest that β-catenin is involved in the development of PH by promoting glycolysis and the inflammatory response in macrophages. Inhibition of β-catenin could improve the progression of PH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。