Alpha-Taxilin: A Potential Diagnosis and Therapeutics Target in Rheumatoid Arthritis Which Interacts with Key Glycolytic Enzymes Associated with Metabolic Shifts in Fibroblast-Like Synoviocytes

Alpha-Taxilin:类风湿关节炎的潜在诊断和治疗靶点,与成纤维细胞样滑膜细胞代谢转变相关的关键糖酵解酶相互作用

阅读:6
作者:Ashish Sarkar, Debolina Chakraborty, Swati Malik, Sonia Mann, Prachi Agnihotri, Monu Monu, Vijay Kumar, Sagarika Biswas

Background

Rheumatoid Arthritis (RA) is a chronic multifactorial inflammatory autoimmune disease of the synovial joint with unknown etiology. In our previous study, we identified Alpha-Taxilin (α-Taxilin) as one of the upregulated proteins in RA and validated it in different biological samples such as tissue, synovial fluid, and blood cells. Here we further investigated its mechanistic role in RA pathophysiology.

Conclusion

α-Taxilin has been found to be associated with glycolysis and gluconeogenesis. This may lead to a metabolic shift in synovial cells, ROS generation, and TLR activation. Therefore, α-Taxilin can be targeted for its diagnostic and therapeutic potential in RA along with other parameters.

Methods

The α-Taxilin was validated in a larger cohort (n = 106) of RA plasma by Enzyme-linked Immunosorbent Assay (ELISA). Interacting proteins were identified by co-immunoprecipitation followed by mass spectrometry, and in silico analyses were done to identify protein-protein interactions and involved pathways. The in vitro knockdown studies were performed on SW982 cells and Rheumatoid Arthritis Fibroblast-like Synoviocyte (RAFLS) to investigate the molecular mechanism of α-Taxilin involved in RA via Western Blot, quantitative real-time polymerase chain reaction (qRT-PCR), and confocal microscopy, which was further validated by in vivo studies via collagen-induced arthritis (CIA) rat model.

Results

The plasma level of α-Taxilin was found to be significantly increased in plasma samples from patients with RA compared to osteoarthritis (OA), systemic lupus erythematosus (SLE), and healthy controls (HC). The α-Taxilin was found to be positively correlated with anti-citrullinated peptide antibody (ACPA) levels and DAS score in patients with RA. Seventeen interacting proteins were identified with α-Taxilin, and in silico study suggested that glycolysis and gluconeogenesis pathways are the most affected pathways regulated by α-Taxilin. The in vitro knockdown studies of α-Taxilin resulted in decreased levels of pro-inflammatory cytokines, p65, reactive oxygen species (ROS), and toll-like receptors (TLRs). It also improved macroscopic arthritic score, paw edema, and inflammation in CIA rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。