Olmesartan attenuates pressure-overload- or post-infarction-induced cardiac remodeling in mice

奥美沙坦减轻小鼠压力超负荷或梗塞后引起的心脏重塑

阅读:7
作者:Qiancheng Wang, Zhenhuan Chen, Xiaobo Huang, Lin Chen, Baihe Chen, Yingqi Zhu, Shiping Cao, Wangjun Liao, Jianping Bin, Masafumi Kitakaze, Yulin Liao

Abstract

Either angiotensin converting enzyme inhibitor (ACEI) or angiotensin receptor 1 blocker (ARB) attenuates cardiac remodeling. However, the overall molecular modulation of the reversing remodeling process in response to the ACEI or ARB treatment is not yet well determined. In this study, we examined whether gene expressions are modulated by ACEI (temocapril), ARB (olmesartan) or both in a murine model with transverse aortic constriction (TAC) and confirm whether periostin is a target gene of olmesartan in mice with myocardial infarction (MI). We detected 109 genes that were significantly up-regulated in TAC mice and a majority of these were down-regulated in response to temocapril, olmesartan or their combination which significantly attenuated cardiac remodeling at one or four weeks. Real-time RT-PCR demonstrated that olmesartan, temocapril or their combination down-regulated the expression of periostin. In MI mice treated with olmesartan for 4 weeks, the left ventricular end-diastolic and systolic dimensions measured with echocardiography were lower, whereas maximum rate of rise and fall rate of LV pressure (±dp/dt max) were greater, and Azan-staining cardiac fibrotic area was smaller. Furthermore, periostin was upregulated in response to MI, whereas olmesartan blocked this upregulation. Post-MI fibrosis was smaller in periostin knockout adult mice than in wildtype mice, while glycogen synthase kinase 3β was increased and cyclin D1 was decreased in periostin knockout mice. These findings indicate that periostin is a target gene of ARB and olmesartan reverses cardiac remodeling at least partially through the downregulation of periostin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。