Transcriptomic and proteomic analysis of mouse radiation-induced acute myeloid leukaemia (AML)

小鼠放射诱发的急性髓细胞白血病 (AML) 的转录组学和蛋白质组学分析

阅读:8
作者:Christophe Badie, Agnieszka Blachowicz, Zarko Barjaktarovic, Rosemary Finnon, Arlette Michaux, Hakan Sarioglu, Natalie Brown, Grainne Manning, M Abderrafi Benotmane, Soile Tapio, Joanna Polanska, Simon D Bouffler

Abstract

A combined transcriptome and proteome analysis of mouse radiation-induced AMLs using two primary AMLs, cell lines from these primaries, another cell line and its in vivo passage is reported. Compared to haematopoietic progenitor and stem cells (HPSC), over 5000 transcriptome alterations were identified, 2600 present in all materials. 55 and 3 alterations were detected in the proteomes of the cell lines and primary/in vivo passage material respectively, with one common to all materials. In cell lines, approximately 50% of the transcriptome changes are related to adaptation to cell culture, and in the proteome this proportion was higher. An AML 'signature' of 17 genes/proteins commonly deregulated in primary AMLs and cell lines compared to HPSCs was identified and validated using human AML transcriptome data. This also distinguishes primary AMLs from cell lines and includes proteins such as Coronin 1, pontin/RUVBL1 and Myeloperoxidase commonly implicated in human AML. C-Myc was identified as having a key role in radiation leukaemogenesis. These data identify novel candidates relevant to mouse radiation AML pathogenesis, and confirm that pathways of leukaemogenesis in the mouse and human share substantial commonality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。