Genome-wide pharmacologic unmasking identifies tumor suppressive microRNAs in multiple myeloma

全基因组药理学揭示多发性骨髓瘤中的肿瘤抑制微小RNA

阅读:4
作者:Chonglei Bi, Tae-Hoon Chung, Gaofeng Huang, Jianbiao Zhou, Junli Yan, Gregory J Ahmann, Rafael Fonseca, Wee Joo Chng

Abstract

Epigenetic alterations have emerged as an important cause of microRNA (miRNA) deregulation. In Multiple Myeloma (MM), a few tumor suppressive miRNAs silenced by DNA hypermethylation have been reported, but so far there are few systemic investigations on epigenetically silenced miRNAs. We conducted genome-wide screening for tumor suppressive miRNAs epigenetically silenced in MM. Four Human MM Cell lines were treated with demethylating agent 5'azacytidine (5'aza). Consistently upregulated miRNAs include miR-155, miR-198, miR-135a*, miR-200c, miR-125a-3p, miR-188-5p, miR-483-5p, miR-663, and miR-630. Methylation array analysis revealed increased methylation at or near miRNA-associated CpG islands in MM patients. Ectopic restoration of miR-155, miR-198, miR-135a*, miR-200c, miR-663 and miR-483-5p significantly repressed MM cell proliferation, migration and colony formation. Furthermore, we derived a 33-gene signature from predicted miRNA target genes that were also upregulated in MM patients and associated with patient survival in three independent myeloma datasets. In summary, we have revealed important, epigenetically silenced tumor suppressive miRNAs by pharmacologic reversal of epigenetic silencing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。