Longitudinal shear wave elasticity measurements of millimeter-sized biomaterials using a single-element transducer platform

使用单元件换能器平台对毫米级生物材料进行纵向剪切波弹性测量

阅读:5
作者:Shao-Lun Lu, Pei-Yu Chao, Wei-Wen Liu, Kun Han, Jason Chia-Hsien Cheng, Pai-Chi Li

Abstract

Temporal variations of the extracellular matrix (ECM) stiffness profoundly impact cellular behaviors, possibly more significantly than the influence of static stiffness. Three-dimensional (3D) cell cultures with tunable matrix stiffness have been utilized to characterize the mechanobiological interactions of elasticity-mediated cellular behaviors. Conventional studies usually perform static interrogations of elasticity at micro-scale resolution. While such studies are essential for investigations of cellular mechanotransduction, few tools are available for depicting the temporal dynamics of the stiffness of the cellular environment, especially for optically turbid millimeter-sized biomaterials. We present a single-element transducer shear wave (SW) elasticity imaging system that is applied to a millimeter-sized, ECM-based cell-laden hydrogel. The single-element ultrasound transducer is used both to generate SWs and to detect their arrival times after being reflected from the side boundaries of the sample. The sample's shear wave speed (SWS) is calculated by applying a time-of-flight algorithm to the reflected SWs. We use this noninvasive and technically straightforward approach to demonstrate that exposing 3D cancer cell cultures to X-ray irradiation induces a temporal change in the SWS. The proposed platform is appropriate for investigating in vitro how a group of cells remodels their surrounding matrix and how changes to their mechanical properties could affect the embedded cells in optically turbid millimeter-sized biomaterials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。