Single-Cell Omics for Transcriptome CHaracterization (SCOTCH): isoform-level characterization of gene expression through long-read single-cell RNA sequencing

单细胞转录组表征组学 (SCOTCH):通过长读单细胞 RNA 测序对基因表达进行异构体水平表征

阅读:13
作者:Zhuoran Xu, Hui-Qi Qu, Joe Chan, Charlly Kao, Hakon Hakonarson, Kai Wang

Abstract

The advent of long-read single-cell transcriptome sequencing (lr-scRNA-Seq) represents a significant leap forward in single-cell genomics. With the recent introduction of R10 flowcells by Oxford Nanopore, we propose that previous computational methods designed to handle high sequencing error rates are no longer relevant, and that the prevailing approach using short reads to compile "barcode space" (candidate barcode list) to de-multiplex long reads are no longer necessary. Instead, computational methods should now shift focus on harnessing the unique benefits of long reads to analyze transcriptome complexity. In this context, we introduce a comprehensive suite of computational methods named Single-Cell Omics for Transcriptome CHaracterization (SCOTCH). Our method is compatible with the single-cell library preparation platform from both 10X Genomics and Parse Biosciences, facilitating the analysis of special cell populations, such as neurons, hepatocytes and developing cardiomyocytes. We specifically re-formulated the transcript mapping problem with a compatibility matrix and addressed the multiple-mapping issue using probabilistic inference, which allows the discovery of novel isoforms as well as the detection of differential isoform usage between cell populations. We evaluated SCOTCH through analysis of real data across different combinations of single-cell libraries and sequencing technologies (10X + Illumina, Parse + Illumina, 10X + Nanopore_R9, 10X + Nanopore_R10, Parse + Nanopore_R10), and showed its ability to infer novel biological insights on cell type-specific isoform expression. These datasets enhance the availability of publicly available data for continued development of computational approaches. In summary, SCOTCH allows extraction of more biological insights from the new advancements in single-cell library construction and sequencing technologies, facilitating the examination of transcriptome complexity at the single-cell level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。