Solid lipid nanoparticle delivery of rhynchophylline enhanced the efficiency of allergic asthma treatment via the upregulation of suppressor of cytokine signaling 1 by repressing the p38 signaling pathway

固体脂质纳米颗粒递送钩藤碱通过抑制 p38 信号通路上调细胞因子信号抑制因子 1,增强了过敏性哮喘的治疗效果

阅读:13
作者:Chuanfeng Lv, Hui Li, Hongxia Cui, Qianyu Bi, Meng Wang

Abstract

Allergic asthma is one of the most common chronic airway diseases, and there is still a lack of effective drugs for the treatment of allergic asthma. The purpose of this work is to formulate rhynchophylline (Rhy)-solid lipid nanoparticles (SLNs) to improve their therapeutic efficacy in a mice allergic model of asthma. A solvent injection method was employed to prepare the Rhy-SLNs. Physicochemical characterization of Rhy-SLNs was measured, and the release assessment was investigated, followed by the release kinetics. Next, a model of murine experimental asthma was established. Mice were subcutaneously injected with 20 μg ovalbumin mixed with 1 mg aluminum hydroxide on days 0, 14, 28, and 42 and administrated aerosolized 1% ovalbumin (w/v) by inhalation from day 21 to day 42. Mice were intraperitoneally injected with 20 mg/kg Rhy-SLNs or Rhy at one hour before the airway challenge with ovalbumin. The results showed that Rhy-SLNs revealed a mean particle size of 62.06 ± 1.62 nm with a zeta potential value of -6.53 ± 0.04 mV and 82.6 ± 1.8% drug entrapment efficiency. The release curve of Rhy-SLNs was much higher than the drug released in phosphate buffer saline at 0, 1, 1.5, 2, 4, or 6 h. Moreover, Rhy-SLNs exerted better effects on inhibiting ovalbumin-induced airway inflammation, oxidative stress, airway remodeling (including collagen deposition and mucus gland hyperplasia) than Rhy in murine experimental asthma. Subsequently, we found that Rhy-SLNs relieved allergic asthma via the upregulation of the suppressor of cytokine signaling 1 by repressing the p38 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。