Cationic-nanogel nasal vaccine containing the ectodomain of RSV-small hydrophobic protein induces protective immunity in rodents

含有呼吸道合胞病毒小疏水蛋白胞外结构域的阳离子纳米凝胶鼻疫苗可在啮齿动物中诱导保护性免疫

阅读:5
作者:Shingo Umemoto, Rika Nakahashi-Ouchida, Yoshikazu Yuki, Shiho Kurokawa, Tomonori Machita, Yohei Uchida, Hiromi Mori, Tomoyuki Yamanoue, Takehiko Shibata, Shin-Ichi Sawada, Kazuya Ishige, Takashi Hirano, Kohtaro Fujihashi, Kazunari Akiyoshi, Yosuke Kurashima, Daisuke Tokuhara, Peter B Ernst, Masashi

Abstract

Respiratory syncytial virus (RSV) is a leading cause of upper and lower respiratory tract infection, especially in children and the elderly. Various vaccines containing the major transmembrane surface proteins of RSV (proteins F and G) have been tested; however, they have either afforded inadequate protection or are associated with the risk of vaccine-enhanced disease (VED). Recently, F protein-based maternal immunization and vaccines for elderly patients have shown promising results in phase III clinical trials, however, these vaccines have been administered by injection. Here, we examined the potential of using the ectodomain of small hydrophobic protein (SHe), also an RSV transmembrane surface protein, as a nasal vaccine antigen. A vaccine was formulated using our previously developed cationic cholesteryl-group-bearing pullulan nanogel as the delivery system, and SHe was linked in triplicate to pneumococcal surface protein A as a carrier protein. Nasal immunization of mice and cotton rats induced both SHe-specific serum IgG and mucosal IgA antibodies, preventing viral invasion in both the upper and lower respiratory tracts without inducing VED. Moreover, nasal immunization induced greater protective immunity against RSV in the upper respiratory tract than did systemic immunization, suggesting a critical role for mucosal RSV-specific IgA responses in viral elimination at the airway epithelium. Thus, our nasal vaccine induced effective protection against RSV infection in the airway mucosa and is therefore a promising vaccine candidate for further development.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。