MiR-132-3p suppresses peritoneal fibrosis induced by peritoneal dialysis via targeting TGF-β1/Smad2/3 signaling pathway

MiR-132-3p通过靶向TGF-β1/Smad2/3信号通路抑制腹膜透析诱导的腹膜纤维化

阅读:6
作者:Yangyang Yin, Yuqi Yang, Yongqiang Zhang, Yu Shang, Qian Li, Jing Yuan

Background

Peritoneal fibrosis (PF) is the main complication of peritoneal dialysis (PD) and the most common cause of cessation from PD. There is still no effective therapeutic approach to reserve PF. We aimed to investigate the role of miR-132-3p and underlying potential mechanisms in PF.

Conclusion

MiR-132-3p ameliorated PF by suppressing TGF-β1/Smad2/3 activity, suggesting that miR-132-3p represented a potential therapeutic approach for PF.

Methods

A total of 18 Sprague-Dawley (SD) rats were divided randomly into three groups (n = 6): (i)Control group (ii)PF group (iii)PF+Losartan group; Rats in the PF group and PF+Losartan group received daily intraperitoneal injections of 3 mg/kg chlorhexidine for 14 days, and rats in the PF+Losartan group simultaneously received daily intraperitoneal injections of 2 mg/kg losartan for 14 days. The control group was injected with saline in the same volume. Met-5A cells were treated for 24h with TGF-β1 dissolved in recombinant buffered saline at a concentration of 10 ng/ml, meanwhile, PBS solution as a negative control. The human peritoneal solution was collected for the detection of miR-132-3p.

Results

In vivo, SD rats were infused with chlorhexidine to establish PF model, and we found that miR-132-3p significantly decreased and the expressions of transforming growth factor-β1 (TGF-β1), and Smad2/3 were up-regulated in PF. In vitro, miR-132-3p mimics suppressed TGF-β1/Smad2/3 activity, whereas miR-132-3p inhibition activated the pathway. In human peritoneal solution, we found that the expression of miR-132-3p decreased in a time-dependent model and its effect became more pronounced with longer PD duration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。