The usefulness of artificial intelligence for safety assessment of different transport modes

人工智能对不同运输方式安全评估的实用性

阅读:8
作者:Dimitrios I Tselentis, Eleonora Papadimitriou, Pieter van Gelder

Abstract

Recent research in transport safety focuses on the processing of large amounts of available data by means of intelligent systems, in order to decrease the number of accidents for transportation users. Several Machine Learning (ML) and Artificial Intelligence (AI) applications have been developed to address safety problems and improve efficiency of transportation systems. However exchange of knowledge between transport modes has been limited. This paper reviews the ML and AI methods used in different transport modes (road, rail, maritime and aviation) to address safety problems, in order to identify good practices and experiences that can be transferable between transport modes. The methods examined include statistical and econometric methods, algorithmic approaches, classification and clustering methods, artificial neural networks (ANN) as well as optimization and dimension reduction techniques. Our research reveals the increasing interest of transportation researchers and practitioners in AI applications for crash prediction, incident/failure detection, pattern identification, driver/operator or route assistance, as well as optimization problems. The most popular and efficient methods used in all transport modes are ANN, SVM, Hidden Markov Models and Bayesian models. The type of the analytical technique is mainly driven by the purpose of the safety analysis performed. Finally, a wider variety of AI and ML methodologies is observed in road transport mode, which also appears to concentrate a higher, and constantly increasing, number of studies compared to the other modes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。