Gestational high fat diet programs hepatic phosphoenolpyruvate carboxykinase gene expression and histone modification in neonatal offspring rats

妊娠期高脂饮食方案对新生子代大鼠肝脏磷酸烯醇丙酮酸羧激酶基因表达及组蛋白修饰的影响

阅读:7
作者:Rita S Strakovsky, Xiyuan Zhang, Dan Zhou, Yuan-Xiang Pan

Abstract

In insulin resistance and type II diabetes, there is an elevation of hepatic gluconeogenesis, which contributes to hyperglycaemia. Studies in experimental animals have provided evidence that consumption of high fat (HF) diets by female rats programs the progeny for glucose intolerance in adulthood, but the mechanisms behind the in utero programming remain poorly understood. The present study analysed the effect of a maternal HF diet on fetal gluconeogenic gene expression and potential regulation mechanism related to histone modifications. Dams were fed either a Control (C, 16% kcal fat) or a high-fat (HF, 45% kcal fat) diet throughout gestation. Livers of the offspring were collected on gestational day 21 and analysed to determine the consequences of a maternal HF diet on molecular markers of fetal liver gluconeogenesis. We demonstrated that offspring of HF-fed dams were significantly heavier and had significantly higher blood glucose levels at the time of delivery than offspring of dams fed the C diet. While maternal gluconeogenesis and plasma glucose were not affected by the HF diet, offspring of HF-fed dams had significantly higher mRNA contents of gluconeogenic genes in addition to the elevated plasma glucose. In addition to increased transcription rate, a gestational HF diet resulted in modifications of the Pck1 histone code in livers of offspring. Our results demonstrate that in utero exposure to HF diet has the potential to program the gluconeogenic capacity of offspring through epigenetic modifications, which could potentially lead to excessive glucose production and altered insulin sensitivity in adulthood.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。