Bioelectric Signaling: Role of Bioelectricity in Directional Cell Migration in Wound Healing

生物电信号:生物电在伤口愈合中定向细胞迁移的作用

阅读:6
作者:Min Zhao, Marco Rolandi, R Rivkah Isseroff

Abstract

In wound healing, individual cells' behaviors coordinate movement toward the wound center to restore small or large barrier defects. The migration of epithelial cells as a continuous sheet structure is one of the most important processes by which the skin barrier is restored. How such multicellular and tissue level movement is initiated upon injury, coordinated during healing, and stopped when wounds healed has been a research focus for decades. When skin is wounded, the compromised epithelial barrier generates endogenous electric fields (EFs), produced by ion channels and maintained by cell junctions. These EFs are present across wounds, with the cathodal pole at the wound center. Epithelial cells detect minute EFs and migrate directionally in response to electrical signals. It has long been postulated that the naturally occurring EFs facilitate wound healing by guiding cell migration. It is not until recently that experimental evidence has shown that large epithelial sheets of keratinocytes or corneal epithelial cells respond to applied EFs by collective directional migration. Although some of the mechanisms of the collective cell migration are similar to those used by isolated cells, there are unique mechanisms that govern the coordinated movement of the cohesive sheet. We will review the understanding of wound EFs and how epithelial cells and other cells important to wound healing respond to the electric signals individually as well as collectively. Mounting evidence suggests that wound bioelectrical signaling is an important mechanism in healing. Critical understanding and proper exploitation of this mechanism will be important for better wound healing and regeneration.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。