Advanced solvent signal suppression for the acquisition of 1D and 2D NMR spectra of Scotch Whisky

先进的溶剂信号抑制,用于获取苏格兰威士忌的 1D 和 2D NMR 光谱

阅读:7
作者:Will Kew, Nicholle G A Bell, Ian Goodall, Dušan Uhrín

Abstract

A simple and robust solvent suppression technique that enables acquisition of high-quality 1D 1 H nuclear magnetic resonance (NMR) spectra of alcoholic beverages on cryoprobe instruments was developed and applied to acquire NMR spectra of Scotch Whisky. The method uses 3 channels to suppress signals of water and ethanol, including those of 13 C satellites of ethanol. It is executed in automation allowing high throughput investigations of alcoholic beverages. On the basis of the well-established 1D nuclear Overhauser spectroscopy (NOESY) solvent suppression technique, this method suppresses the solvent at the beginning of the pulse sequence, producing pure phase signals minimally affected by the relaxation. The developed solvent suppression procedure was integrated into several homocorrelated and heterocorrelated 2D NMR experiments, including 2D correlation spectroscopy (COSY), 2D total correlation spectroscopy (TOCSY), 2D band-selective TOCSY, 2D J-resolved spectroscopy, 2D 1 H, 13 C heteronuclear single-quantum correlation spectroscopy (HSQC), 2D 1 H, 13 C HSQC-TOCSY, and 2D 1 H, 13 C heteronuclear multiple-bond correlation spectroscopy (HMBC). A 1D chemical-shift-selective TOCSY experiments was also modified. The wealth of information obtained by these experiments will assist in NMR structure elucidation of Scotch Whisky congeners and generally the composition of alcoholic beverages at the molecular level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。