Lysophosphatidylcholine 14:0 Alleviates Lipopolysaccharide-Induced Acute Lung Injury via Protecting Alveolar Epithelial Barrier by Activation of Nrf2/HO-1 Pathway

溶血磷脂酰胆碱 14:0 通过激活 Nrf2/HO-1 通路保护肺泡上皮屏障,减轻脂多糖诱导的急性肺损伤

阅读:9
作者:Xiling Liu #, Shanshan Su #, Lijing Xia, Xiong Lei, Shangpu Zou, Liwen Zhou, Ruobing Yang, Kai Li, Pengcheng Lin, Yuping Li

Background

Acute lung injury (ALI) is characterized by diffuse alveolar injury and acute non-cardiac pulmonary edema, with high morbidity and mortality. Lysophosphatidylcholine 14:0 (LPC14:0) has anti-inflammatory and anti-oxidative effects in sepsis and bacteremia. We hypothesized that LPC14:0 could be a potential treatment for ALI. Therefore, the effects of LPC14:0 on lung epithelial cells and the underlying mechanism on ALI were investigated.

Conclusion

This study first demonstrated that LPC14:0 mitigated LPS-induced ALI and the destruction of tight junctions, at least in part through up-regulation of the Nrf2/HO-1 pathway.

Methods

Lipopolysaccharide (LPS) was instilled intratracheally in vivo while the Murine Lung Epithelial-12 was stimulated by tert-butyl hydroperoxide (t-BHP) in vitro to induce the ALI model. In vivo, lung injury was evaluated by histopathological changes and pulmonary edema was assessed by wet/dry ratio. Evans blue infiltration in lung tissue, total protein content, total cell counts and inflammatory factors in bronchoalveolar lavage fluid were evaluated for alveolar permeability. In vitro, cell viability and cell death rate were assessed by cell counting kit-8 and Calcein-AM/PI stain respectively. The expression of ZO-1, Occludin, Nrf2, and HO-1 was evaluated by Western blot.

Results

LPC14:0 attenuated the LPS-stimulated lung injury and oxidative stress in vivo, and alleviated the t-BHP-induced cell damage in vitro. Moreover, LPC14:0 significantly inhibited the degradation of the tight junction proteins and activated the Nrf2/HO-1 signaling pathway both in vivo and in vitro. Mechanistically, ML385, the Nrf2 inhibitor, inhibited the protective effects of LPC14:0 on barrier function in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。