NNC 26-9100 increases Aβ1-42 phagocytosis, inhibits nitric oxide production and decreases calcium in BV2 microglia cells

NNC 26-9100 可增强 Aβ1-42 吞噬作用、抑制一氧化氮生成并降低 BV2 小胶质细胞中的钙

阅读:4
作者:Joseph Schober, Jahnavi Polina, Field Walters, Nathan Scott, Eric Lodholz, Albert Crider, Karin Sandoval, Ken Witt

Abstract

Microglia are the resident immune cell of the brain involved in the development and progression of Alzheimer's disease (AD). Modulation of microglia activity represents a potential mechanism for treating AD. Herein, the compound NNC 26-9100 (NNC) was evaluated in toxicity, nitric oxide release, Aβ1-42 uptake and cytosolic calcium assays during lipopolysaccharide (LPS)-activated conditions using mouse BV2 microglia cells. After 24 hours, LPS increased cell toxicity in the alamar blue and lactate dehydrogenase assays, increased nitrite release, and increase cytoplasmic calcium. Addition of NNC decreased the LPS-induce lactate dehydrogenase release, had no effect in the alamar blue assay, decreased nitrite release and decreased cytosolic calcium. In the absence of LPS, NNC increased uptake of FITC-tagged Aβ1-42. These data demonstrate that NNC treatment decreases nitrosative stress and microglia cell damage during LPS-induced activation and enhances phagocytosis of Aβ1-42 during non-inflammatory conditions. Thus, NNC 26-9100 may have beneficial effects in AD and in inflammatory diseases of the brain through enhancement of microglial Aβ clearance, and cell protective effects through prevention of elevated cytosolic calcium and inhibition of nitric oxide release.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。