Transcranial Laser Photobiomodulation Improves Intracellular Signaling Linked to Cell Survival, Memory and Glucose Metabolism in the Aged Brain: A Preliminary Study

颅内激光光生物调节可改善与老年大脑细胞存活、记忆和葡萄糖代谢相关的细胞内信号传导:一项初步研究

阅读:6
作者:Fabrízio Dos Santos Cardoso, Fernanda Cristina Borini Mansur, Rodrigo Álvaro Brandão Lopes-Martins, Francisco Gonzalez-Lima, Sérgio Gomes da Silva

Abstract

Aging is often accompanied by exacerbated activation of cell death-related signaling pathways and decreased energy metabolism. We hypothesized that transcranial near-infrared laser may increase intracellular signaling pathways beneficial to aging brains, such as those that regulate brain cell proliferation, apoptosis, and energy metabolism. To test this hypothesis, we investigated the expression and activation of intracellular signaling proteins in the cerebral cortex and hippocampus of aged rats (20 months old) treated with the transcranial near-infrared laser for 58 consecutive days. As compared to sham controls, transcranial laser treatment increased intracellular signaling proteins related to cell proliferation and cell survival, such as signal transducer and activator of transcription 3 (STAT3), extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p70 ribosomal protein S6 kinase (p70S6K) and protein kinase B (PKB), also known as Akt that is linked to glucose metabolism. In addition, ERK is linked to memory, while ERK and JNK signaling pathways regulate glucose metabolism. Specifically, the laser treatment caused the activation of STAT3, ERK, and JNK signaling proteins in the cerebral cortex. In the hippocampus, the laser treatment increased the expression of p70S6K and STAT3 and the activation of Akt. Taken together, the data support the hypothesis that transcranial laser photobiomodulation improves intracellular signaling pathways linked to cell survival, memory, and glucose metabolism in the brain of aged rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。