Synthesis and Bioevaluation of New Stable Derivatives of Chrysin-8- C-Glucoside That Modulate the Antioxidant Keap1/Nrf2/HO-1 Pathway in Human Macrophages

调节人类巨噬细胞中抗氧化 Keap1/Nrf2/HO-1 通路的白杨素-8-C-葡萄糖苷新型稳定衍生物的合成及生物评价

阅读:6
作者:Javier Ávila-Román, Lirenny Quevedo-Tinoco, Antonio J Oliveros-Ortiz, Sara García-Gil, Gabriela Rodríguez-García, Virginia Motilva, Mario A Gómez-Hurtado, Elena Talero

Conclusions

Compared to the 8-C-glucoside parent chrysin, compound 1a exhibited the strongest antioxidant and anti-inflammatory activity. We hypothesized that the incorporation of an acetate group (1a) may reduce its polarity and, thus, increase membrane permeability, leading to better pharmacological activity. These findings support the potential use of these phenolic compounds as Nrf2 activators against oxidative-stress-related inflammatory diseases.

Methods

THP-1 macrophages were used to determine the viability in the presence of chrysin derivatives, and non-cytotoxic concentrations were selected. Subsequently, lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) production and inflammatory mediators were examined. The involvement of chrysin derivatives with the Keap1 and Nrf2 antioxidant system was determined by docking and Western blotting studies.

Results

Our data demonstrated, for the first time, that pretreatment with the three compounds caused a significant reduction in LPS-induced reactive oxygen species (ROS) production and pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β) levels, as well as in cyclooxygenase 2 (COX-2) expression. The mechanisms underlying these protective effects were related, at least in part, to the competitive molecular interactions of these phenolic compounds with Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2), which would allow the dissociation of Nrf2 and its translocation into the nucleus and the subsequent up-regulation of hemo-oxygenase 1 (HO-1) expression. Conclusions: Compared to the 8-C-glucoside parent chrysin, compound 1a exhibited the strongest antioxidant and anti-inflammatory activity. We hypothesized that the incorporation of an acetate group (1a) may reduce its polarity and, thus, increase membrane permeability, leading to better pharmacological activity. These findings support the potential use of these phenolic compounds as Nrf2 activators against oxidative-stress-related inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。