Grape seed proanthocyanidin extract protects from cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress-induced apoptosis

葡萄籽原花青素提取物通过抑制内质网应激诱导的细胞凋亡来预防顺铂引起的肾毒性

阅读:10
作者:Zhaoli Gao, Guangyi Liu, Zhao Hu, Xing Li, Xiangdong Yang, Bei Jiang, Xianhua Li

Abstract

Cisplatin (CP) is used as an antineoplastic drug in the clinic, but its nephrotoxicity limits its use. Grape seed proanthocyanidin extract (GSPE) is a powerful antioxidant. In this study, we investigated whether GSPE can prevent CP-induced nephrotoxicity and explored the underlying mechanism. Male C57/BL6 mice were randomly divided into four groups: control group (N), CP group (C), receiving an intraperitoneal (ip) injection of 20 mg/kg CP, GSPE group (G), receiving an intragastric (ig) dose of 500 mg/kg GSPE, and CP+GSPE group (C+G), where ig administration of GSPE was performed 30 min prior to ip injection of CP, followed by an additional ig administration of GSPE 72 h later. Blood and kidney samples were collected 120 h after treatment. The pathological changes in the kidney were examined by periodic acid-Schiff (PAS) staining, while the protein levels of glucose-regulated protein 78 (GRP78), phosphorylated‑extracellular signal-regulated kinase (p-ERK) and caspase-12 were examined by western blotting and immunohistochemical staining. Apoptosis was examined by a terminal deoxynucleotidyl transferase dUTP nick‑end labeling (TUNEL) assay. Compared to the CP group, the CP+GSPE group had a significant decrease in the level of blood urea nitrogen (BUN), serum creatinine (Scr) and reduced renal index (RI) (P<0.05), and showed limited histopathological damage. The number of TUNEL-positive cells was significantly reduced in the CP+GSPE group compared to the CP group (P<0.05), and the protein expression of GRP78, p-ERK and caspase-12 was significantly reduced in the CP+GSPE group (P<0.05). We conclude that GSPE can protect the renal function from CP-induced nephrotoxicity and can attenuate the endoplasmic reticulum (ER) stress‑induced apoptosis via regulation of the caspase-12 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。