Valproic acid-induced fetal malformations are reduced by maternal immune stimulation with granulocyte-macrophage colony-stimulating factor or interferon-gamma

母体使用粒细胞-巨噬细胞集落刺激因子或干扰素-γ进行免疫刺激可减少丙戊酸引起的胎儿畸形

阅读:11
作者:Terry C Hrubec, Mingjin Yan, Keying Ye, Carolyn M Salafia, Steven D Holladay

Abstract

Valproic acid, a drug commonly used to treat seizures and other psychiatric disorders, causes neural tube defects (NTDs) in exposed fetuses at a rate 20 times higher than in the general population. Failure of the neural tube to close during development results in exencephaly or anencephaly, as well as spina bifida. In mice, nonspecific activation of the maternal immune system can reduce fetal abnormalities caused by diverse etiologies, including diabetes-induced NTDs. We hypothesized that nonspecific activation of the maternal immune system with interferon-gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) could reduce valproic acid (VA)-induced defects as well. Female CD-1 mice were given immune stimulant prebreeding: either IFN-gamma or GM-CSF. Approximately half of the control and immune-stimulated pregnant females were then exposed to 500 mg/kg VA on the morning of gestational day 8. The incidence of developmental defects was determined on gestational day 17 from at least eight litters in each of the following treatment groups: control, VA only, IFN-gamma only, IFN-gamma+VA, GM-CSF only, and GM-CSF+VA. The incidence of NTDs was 18% in fetuses exposed to VA alone, compared to 3.7% and 2.9% in fetuses exposed to IFN-gamma+VA, or GM-CSF+VA respectively. Ocular defects were also significantly reduced from 28.0% in VA exposed groups to 9.8% in IFN-gamma+VA and 12.5% in GM-CSF+VA groups. The mechanisms by which maternal immune stimulation prevents birth defects remain unclear, but may involve maternal or fetal production of cytokines or growth factors which protect the fetus from the dysregulatory effects of teratogens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。