Interleukin-3 Modulates Macrophage Phagocytic Activity and Promotes Spinal Cord Injury Repair

白细胞介素-3调节巨噬细胞吞噬活性促进脊髓损伤修复

阅读:6
作者:Jianjian Li, Meige Zheng, Fangru Ouyang, Jianan Ye, Jinxin Huang, Yuanzhe Zhao, Jingwen Wang, Fangli Shan, Ziyu Li, Shuishen Yu, Fei Yao, Dasheng Tian, Li Cheng, Juehua Jing

Background

Effective clearance of lipid-rich debris by macrophages is critical for neural repair and regeneration after spinal cord injury (SCI). Interleukin-3 (IL-3) has been implicated in programming microglia to cluster and clear pathological aggregates in neurodegenerative disease. Yet, the influence of IL-3 on lipid debris clearance post-SCI is not well characterized.

Conclusion

Our findings shed light on the role of IL-3 in modulating macrophage phagocytic activity and suggest that the IL-3/IL-3Rα pathway may be a potential therapeutic target for enhancing neural repair and functional recovery after SCI.

Methods

We established a mouse model of spinal cord compression injury to investigate the role of IL-3. Blockage of IL-3 was achieved through intrathecal delivery of an IL-3-neutralizing antibody, while IL-3 activation was augmented via in situ injection of recombinant IL-3 into the lesion site immediately post-SCI. Immunofluorescence staining was performed to determine IL-3 and IL-3Rα sources and distribution, lipid droplet accumulation, neuron preservation, and axon regeneration after SCI. The Basso Mouse Scale (BMS) and footprint analysis were employed to evaluate locomotor function recovery.

Results

We found that IL-3 expression was significantly upregulated post-SCI, peaking at 14 days post-injury (dpi) and persisting until 28 dpi. Notably, IL-3 was primarily secreted by astrocytes surrounding the lesion epicenter. Correspondingly, IL-3Rα was predominantly observed in macrophages within the injury core, also elevating at 14 dpi. Neutralization of IL-3 led to increased lipid droplet accumulation, along with markedly widespread of macrophages and decreased neuronal survival, resulting in severe motor deficits compared to controls. Conversely, in situ injection of IL-3 reduced lipid droplet accumulation in macrophages, preserved neurons, promoted axon regeneration, and ultimately contributed to the recovery of motor function after SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。