Identification of myeloproliferative neoplasm drug agents via predictive simulation modeling: assessing responsiveness with micro-environment derived cytokines

通过预测模拟模型识别骨髓增生性肿瘤药物:评估微环境衍生细胞因子的反应性

阅读:8
作者:Susumu S Kobayashi, Shireen Vali, Ansu Kumar, Neeraj Singh, Taher Abbasi, Peter P Sayeski

Abstract

Previous studies have shown that the bone marrow micro-environment supports the myeloproliferative neoplasms (MPN) phenotype including via the production of cytokines that can induce resistance to frontline MPN therapies. However, the mechanisms by which this occurs are poorly understood. Moreover, the ability to rapidly identify drug agents that can act as adjuvants to existing MPN frontline therapies is virtually non-existent. Here, using a novel predictive simulation approach, we sought to determine the effect of various drug agents on MPN cell lines, both with and without the micro-environment derived inflammatory cytokines. We first created individual simulation models for two representative MPN cell lines; HEL and SET-2, based on their genomic mutation and copy number variation (CNV) data. Running computational simulations on these virtual cell line models, we identified a synergistic effect of two drug agents on cell proliferation and viability; namely, the Jak2 kinase inhibitor, G6, and the Bcl-2 inhibitor, ABT737. IL-6 did not show any impact on the cells due to the predicted lack of IL-6 signaling within these cells. Interestingly, TNFα increased the sensitivity of the single drug agents and their use in combination while IFNγ decreased the sensitivity. In summary, this study predictively identified two drug agents that reduce MPN cell viability via independent mechanisms that was prospectively validated. Moreover, their efficacy is either potentiated or inhibited, by some of the micro-environment derived cytokines. Lastly, this study has validated the use of this simulation based technology to prospectively determine such responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。