Nano-Enriched Self-Powered Wireless Body Area Network for Sustainable Health Monitoring Services

用于可持续健康监测服务的纳米富集自供电无线体域网络

阅读:4
作者:Bassem Mokhtar, Ishac Kandas, Mohammed Gamal, Nada Omran, Ahmed H Hassanin, Nader Shehata

Abstract

Advances in nanotechnology have enabled the creation of novel materials with specific electrical and physical characteristics. This leads to a significant development in the industry of electronics that can be applied in various fields. In this paper, we propose a fabrication of nanotechnology-based materials that can be used to design stretchy piezoelectric nanofibers for energy harvesting to power connected bio-nanosensors in a Wireless Body Area Network (WBAN). The bio-nanosensors are powered based on harvested energy from mechanical movements of the body, specifically the arms, joints, and heartbeats. A suite of these nano-enriched bio-nanosensors can be used to form microgrids for a self-powered wireless body area network (SpWBAN), which can be used in various sustainable health monitoring services. A system model for an SpWBAN with an energy harvesting-based medium access control protocol is presented and analyzed based on fabricated nanofibers with specific characteristics. The simulation results show that the SpWBAN outperforms and has a longer lifetime than contemporary WBAN system designs without self-powering capability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。