Exosomes derived from human placental mesenchymal stem cells in combination with hyperbaric oxygen therapy enhance neuroregeneration in a rat model of sciatic nerve crush injury

源自人胎盘间充质干细胞的外泌体与高压氧疗法相结合可增强大鼠坐骨神经挤压伤模型的神经再生

阅读:9
作者:Fereshteh Talebpour Amiri, Aref Jafari, Fahimeh Ahmadi, Hossein Mokhtari, Amir Raoofi, Farshad Moharrami Kasmaie, Maryam Omran, Mohammad Amin Alimohammadi, Davood Nasiry

Abstract

Peripheral nerve damage continues to be a significant challenge in the field of medicine, with no currently available effective treatment. Currently, we investigated the beneficial effects of human placenta mesenchymal stem cells (PMSCs)- derived exosomes along with hyperbaric oxygen therapy (HBOT) in a sciatic nerve injury model. Seventy-five male mature Sprague-Dawley rats were allocated into five equal groups. In addition to the control group that received no intervention, damaged animals were allocated into four groups as follows: crush group, exosome group, HBOT group, and Exo+HBOT group. After the last neurological evaluations, tissue samples (sciatic nerve and dorsal root ganglion (DRG)) at the injury side, as well as spinal cord segments related to the sciatic nerve were collected to investigate histological, immunohistochemical, biochemical, and molecular characteristics. We found that the volume of the sciatic nerve, the thickness of the myelin sheath, the densities of nerve fibers and Schwann cells, the numerical densities of sensory neurons and glial cells in the DRG, as well as the numerical density of motor neurons in the anterior horn of the spinal cord, the levels of antioxidative factors (GSH, SOD, and CAT) in the sciatic nerve, as well as the neurological functions (EMG latency and SFI) in the treatment groups, especially the Exo+HBOT group, were significantly improved compared to the crush group. This is while the numerical density of glial cells in the spinal cord, the levels of an oxidative factor (MDA), and pro-inflammatory cytokines (IL-1β, TNF-α, and IFN- γ) considerably decreased in the treatment groups, particularly the Exo+HBOT group, compared to the crush group. We conclude that co-administration of PMSCs-derived exosomes and HBOT has synergistic neuroprotective effects in animals undergoing sciatic nerve injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。