Prioritization of Physio-Biochemical Selection Indices and Yield-Attributing Traits toward the Acquisition of Drought Tolerance in Chickpea (Cicer arietinum L.)

鹰嘴豆(Cicer arietinum L.)抗旱性的生理生化选择指标和产量决定性状的优先排序

阅读:9
作者:Prakash N Tiwari, Sharad Tiwari, Swapnil Sapre, Niraj Tripathi, Devendra K Payasi, Mrinalini Singh, Satyendra Thakur, Mohini Sharma, Sushma Tiwari, Manoj Kumar Tripathi

Abstract

Chickpea is widely grown in rainfed areas of developing countries because of its nutritional abundance and adaptability. To overcome the environmental effect of drought on yield, a characteristic-linked selection strategy is proved as well-thought-out and advantageous for the development of drought-tolerant cultivars. To precisely understand the contribution of various physio-biochemical and yield-attributing traits toward drought tolerance in chickpea (Cicer arietinum L.), forty chickpea genotypes were evaluated in the years 2020-2021 and 2021-2022 under normal irrigated as well as drought-stressed conditions. Among the studied genotypes, genotype ICC4958 retained the highest chl content (0.55 mg g-1 FW), minimal electrolyte leakage, and superoxide dismutase (1.48 U/mg FW) and peroxidase (2.21 µmol/min/g FW) activities while cultivar JG11 maintained the maximum relative water content and proline accumulation. The principal-component-based biplots prioritized the physio-biochemical and yield-accrediting characteristics based on their association significance and contribution to terminal drought tolerance. Under drought stress, grain yield per plant was depicted to have a strongly positive association with canopy temperature depression, catalase, superoxide dismutase, and peroxidase activities as well as total soluble sugar, proline, and chlorophyll content, along with the numbers of pods and biological yield per plant. These identified physio-biochemical and yield-attributing traits can be further deployed to select drought-tolerant chickpea genotypes for the breeding of climate-smart chickpea genotypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。