In silico and in vitro potentials of crocin and amphotericin B on Leishmania major: Multiple synergistic mechanisms of actions

藏红花素和两性霉素 B 对利什曼原虫的计算机模拟和体外潜力:多种协同作用机制

阅读:8
作者:Ehsan Salarkia, Iraj Sharifi, Alireza Keyhani, Razieh Tavakoli Oliaee, Ahmad Khosravi, Fatemeh Sharifi, Mehdi Bamorovat, Zahra Babaei

Abstract

A significant barrier to optimal antileishmanial treatment is low efficacy and the emergence of drug resistance. Multiple approaches were used to monitor and assess crocin (a central component of saffron) mixed with amphotericin B (AmpB) potential in silico and in vitro consequences. The binding behavior of crocin and iNOS was the purpose of molecular docking. The results showed that crocin coupled with AmpB demonstrated a safe combination, extremely antileishmanial, suppressed Leishmania arginase absorption, and increased parasite death. This natural flower component is a robust antioxidant, significantly promoting the expression of the Th1-connected cytokines (IL12p40, IFN-γ, and TNF- α), iNOS, and transcription factors (Elk-1, c-Fos, and STAT-1). In comparison, the expression of the Th2-associated phenotypes (IL-10, IL-4, and TGF-β) was significantly reduced. The leishmanicidal effect of this combination was also mediated through programmed cell death (PCD), as confirmed by the manifestation of phosphatidylserine and cell cycle detention at the sub-GO/G1 phase. In conclusion, crocin with AmpB synergistically exerted in vitro antileishmanial action, generated nitric oxide and reactive oxygen species, modulated Th1, and Th2 phenotypes and transfer factors, enhanced PCD profile and arrested the cell cycle of Leishmania major promastigotes. The main action of crocin and AmpB involved wide-ranging mechanistic insights for conducting other clinical settings as promising drug candidates for cutaneous leishmaniasis. Therefore, this combination could be esteemed as a basis for a potential bioactive component and a logical source for leishmanicidal drug development against CL in future advanced clinical settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。