Beta-Cell Injury in Ncb5or-null Mice is Exacerbated by Consumption of a High-Fat Diet

高脂饮食会加剧 Ncb5or 基因缺失小鼠的 β 细胞损伤

阅读:6
作者:Ying Guo, Ming Xu, Bin Deng, Jennifer R Frontera, Karen L Kover, Daniel Aires, Helin Ding, Susan E Carlson, John Turk, Wenfang Wang, Hao Zhu

Abstract

NADH-cytochrome b5 oxidoreductase (Ncb5or) in endoplasmic reticulum (ER) is involved in fatty acid metabolism, and Ncb5or(-/-) mice fed standard chow (SC) are insulin-sensitive but weigh less than wild type (WT) littermates. Ncb5or(-/-) mice develop hyperglycemia at about age 7 weeks due to β-cell dysfunction and loss associated with saturated fatty acid accumulation and manifestations of ER and oxidative stress. Here we report that when Ncb5or(-/-) mice born to heterozygous mothers fed a high fat (HF) diet continue to ingest HF, they weigh as much as SC-fed WT at age 5 weeks. By age 7 weeks, diabetes mellitus develops in all HF-fed vs. 68% of SC-fed Ncb5or(-/-) mice. Islet β-cell content in age 5-week Ncb5or(-/-) mice fed HF for 7 days is lower (53%) than for those fed SC (63%), and both are lower than for WT (75%, SC, vs. 69%, HF). Islet transcript levels for markers of mitochondrial biogenesis (PGC-1α) and ER stress (ATF6α) are higher in Ncb5or(-/-) than WT mice but not significantly affected by diet. Consuming a HF diet exacerbates Ncb5or(-/-) β-cell accumulation of intracellular saturated fatty acids and increases the frequency of ER distention from 11% (SC) to 47% (HF), thus accelerates β-cell injury in Ncb5or(-/-) mice.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。