Quantitative Fluorescence Quenching on Antibody-conjugated Graphene Oxide as a Platform for Protein Sensing

抗体结合氧化石墨烯作为蛋白质传感平台的定量荧光猝灭

阅读:6
作者:Ao Huang, Weiwei Li, Shuo Shi, Tianming Yao

Abstract

We created an immunosensing platform for the detection of proteins in a buffer solution. Our sensing platform relies on graphene oxide (GO) nanosheets conjugated with antibodies to provide quantitative binding sites for analyte proteins. When analyte proteins and standard fluorescein-labelled proteins are competing for the binding sites, the assay exhibits quantitative fluorescence quenching by GO for the fluorescein-labelled proteins as determined by the analyte protein concentration. Because of this mechanism, measured fluorescence intensity from unquenched fluorescein-labelled protein was shown to increase with an increasing analyte protein concentration. As an alternative to the conventional enzyme-linked immunosorbent assay (ELISA), our method does not require an enzyme-linked second antibody for protein recognition and the enzyme for optical signal measurement. Thus, it is beneficial with its low cost and fewer systematic errors caused by the series of antigen-antibody recognition steps in ELISA. Immune globulin G (IgG) was introduced as a model protein to test our method and our results showed that the limit of detection for IgG was 4.67 pmol mL-1 in the buffer solution. This sensing mechanism could be developed into a promising biosensor for the detection of proteins, which would broaden the spectrum of GO applications in both analytical biochemistry and clinical diagnosis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。