Conclusions
To make robust the MSC immunosuppressive potency assay system, controlling the quality of PBMCs used for the assay is essential. Evaluating the inflammatory cytokine production capacity of PBMCs is effective in assessing the quality of the MLR assay system.
Methods
We evaluated the performance of an assay system to examine the proliferation of peripheral blood mononuclear cells (PBMCs) activated with the mitogen phytohemagglutinin (PHA) when co-cultured with MSCs, the so-called one-way mixed lymphocyte reaction (MLR) assay. The MLR assay was performed on the same MSCs using 10 PBMC lots from different donors. In addition, 13 cytokine production levels in PHA-stimulated PBMCs were assessed.
Results
The PHA-stimulated proliferation response of PBMCs, the action of MSCs in the MLR test, and the cytokine release of the respective PBMCs significantly differed among the PBMC lots (p < 0.05). A correlation analysis between the amounts of cytokines released by PBMCs and the immunosuppressive potency of MSCs showed that IFNγ, TNFα, CXCL10, PD-L1, HGF, and CCL5 production in PBMCs was significantly correlated with the MSC-mediated inhibition of PBMC proliferation (p < 0.05). Therefore, we selected two PBMC lots with high PBMC proliferation and PHA-stimulated cytokine (such as IFNγ and TNFα) release for the subsequent one-way MLR assay. The robustness of the established test system was confirmed by repeating the assay several times on different days for the same MSCs (coefficient of variation <0.2). Conclusions: To make robust the MSC immunosuppressive potency assay system, controlling the quality of PBMCs used for the assay is essential. Evaluating the inflammatory cytokine production capacity of PBMCs is effective in assessing the quality of the MLR assay system.
