Community structure and activity of a highly dynamic and nutrient-limited hypersaline microbial mat in Um Alhool Sabkha, Qatar

卡塔尔 Um Alhool Sabkha 高度动态和营养有限的高盐微生物垫的群落结构和活动

阅读:5
作者:Roda Al-Thani, Mohammad A A Al-Najjar, Abdul Munem Al-Raei, Tim Ferdelman, Nguyen M Thang, Ismail Al Shaikh, Mehsin Al-Ansi, Dirk de Beer

Abstract

The Um Alhool area in Qatar is a dynamic evaporative ecosystem that receives seawater from below as it is surrounded by sand dunes. We investigated the chemical composition, the microbial activity and biodiversity of the four main layers (L1-L4) in the photosynthetic mats. Chlorophyll a (Chl a) concentration and distribution (measured by HPLC and hyperspectral imaging, respectively), the phycocyanin distribution (scanned with hyperspectral imaging), oxygenic photosynthesis (determined by microsensor), and the abundance of photosynthetic microorganisms (from 16S and 18S rRNA sequencing) decreased with depth in the euphotic layer (L1). Incident irradiance exponentially attenuated in the same zone reaching 1% at 1.7-mm depth. Proteobacteria dominated all layers of the mat (24%-42% of the identified bacteria). Anoxygenic photosynthetic bacteria (dominated by Chloroflexus) were most abundant in the third red layer of the mat (L3), evidenced by the spectral signature of Bacteriochlorophyll as well as by sequencing. The deep, black layer (L4) was dominated by sulfate reducing bacteria belonging to the Deltaproteobacteria, which were responsible for high sulfate reduction rates (measured using 35S tracer). Members of Halobacteria were the dominant Archaea in all layers of the mat (92%-97%), whereas Nematodes were the main Eukaryotes (up to 87%). Primary productivity rates of Um Alhool mat were similar to those of other hypersaline microbial mats. However, sulfate reduction rates were relatively low, indicating that oxygenic respiration contributes more to organic material degradation than sulfate reduction, because of bioturbation. Although Um Alhool hypersaline mat is a nutrient-limited ecosystem, it is interestingly dynamic and phylogenetically highly diverse. All its components work in a highly efficient and synchronized way to compensate for the lack of nutrient supply provided during regular inundation periods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。