Acute stress alters amygdala microRNA miR-135a and miR-124 expression: inferences for corticosteroid dependent stress response

急性应激改变杏仁核 microRNA miR-135a 和 miR-124 的表达:皮质类固醇依赖性应激反应的推论

阅读:6
作者:Cecilia Mannironi, Jeremy Camon, Francesca De Vito, Antonio Biundo, Maria Egle De Stefano, Irene Persiconi, Irene Bozzoni, Paola Fragapane, Andrea Mele, Carlo Presutti

Abstract

The amygdala is a brain structure considered a key node for the regulation of neuroendocrine stress response. Stress-induced response in amygdala is accomplished through neurotransmitter activation and an alteration of gene expression. MicroRNAs (miRNAs) are important regulators of gene expression in the nervous system and are very well suited effectors of stress response for their ability to reversibly silence specific mRNAs. In order to study how acute stress affects miRNAs expression in amygdala we analyzed the miRNA profile after two hours of mouse restraint, by microarray analysis and reverse transcription real time PCR. We found that miR-135a and miR-124 were negatively regulated. Among in silico predicted targets we identified the mineralocorticoid receptor (MR) as a target of both miR-135a and miR-124. Luciferase experiments and endogenous protein expression analysis upon miRNA upregulation and inhibition allowed us to demonstrate that mir-135a and mir-124 are able to negatively affect the expression of the MR. The increased levels of the amygdala MR protein after two hours of restraint, that we analyzed by western blot, negatively correlate with miR-135a and miR-124 expression. These findings point to a role of miR-135a and miR-124 in acute stress as regulators of the MR, an important effector of early stress response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。