Intrathecal delivery of fluorescent labeled butyrylcholinesterase to the brains of butyrylcholinesterase knock-out mice: visualization and quantification of enzyme distribution in the brain

向丁酰胆碱酯酶基因敲除小鼠的大脑中鞘内输送荧光标记的丁酰胆碱酯酶:大脑中酶分布的可视化和量化

阅读:5
作者:Noel D Johnson, Ellen G Duysen, Oksana Lockridge

Abstract

Exogenously delivered butyrylcholinesterase (BChE) has proven to be an efficient bioscavenger against highly toxic organophosphorus poisons and nerve agents. The scavenger properties of BChE when delivered via intramuscular, intravenous, subcutaneous, or intraperitoneal routes are limited to the body's peripheral sites because the 340 kDa enzyme does not cross the blood-brain barrier (BBB). Overcoming the BBB is an important step toward evaluating the neuroprotective properties of BChE within the central nervous system (CNS). This study examines the feasibility of delivering BChE to the brain and spinal cord by intrathecal (IT) injection. Mice completely devoid of BChE were injected intrathecally with either BChE (80 units) that was labeled with near-infrared fluorescent dye (BChE/IRDye) or a molar equivalent amount of carboxylate dye. The BChE/IRDye and carboxylate dye were tracked using an in vivo imaging system demonstrating the real-time distribution of BChE in the brain and the residence time in the brain and spinal cord through 25 h post-dosing. BChE/IRdye levels in the brain peaked at 6h post-dosing. BChE enzyme activity was quantified in plasma and brain sections by BChE activity assays of plasma and of perfused tissues. Average BChE activity levels were 0.6 units/g in the brains of mice treated with BChE/IRDye at 4h post-dosing. Intense fluorescent signal in the cortex, dentate gyrus and ventricles of the brain at 25 h post-dosing was visualized by confocal microscopy and the presence of BChE was confirmed with activity assays of frozen sections. This procedure proved to be an efficient, safe and rapid method to deliver BChE to the CNS of mice, providing a research tool for determining neural protection by BChE following OP exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。