Caveolin-1 abolishment attenuates the myogenic response in murine cerebral arteries

Caveolin-1 消除可减弱小鼠脑动脉的肌源性反应

阅读:4
作者:Adebowale Adebiyi, Guiling Zhao, Sergey Y Cheranov, Abu Ahmed, Jonathan H Jaggar

Abstract

Intravascular pressure-induced vasoconstriction (the "myogenic response") is intrinsic to smooth muscle cells, but mechanisms that underlie this response are unresolved. Here we investigated the physiological function of arterial smooth muscle cell caveolae in mediating the myogenic response. Since caveolin-1 (cav-1) ablation abolishes caveolae formation in arterial smooth muscle cells, myogenic mechanisms were compared in cerebral arteries from control (cav-1(+/+)) and cav-1-deficient (cav-1(-/-)) mice. At low intravascular pressure (10 mmHg), wall membrane potential, intracellular calcium concentration ([Ca(2+)](i)), and myogenic tone were similar in cav-1(+/+) and cav-1(-/-) arteries. In contrast, pressure elevations to between 30 and 70 mmHg induced a smaller depolarization, [Ca(2+)](i) elevation, and myogenic response in cav-1(-/-) arteries. Depolarization induced by 60 mM K(+) also produced an attenuated [Ca(2+)](i) elevation and constriction in cav-1(-/-) arteries, whereas extracellular Ca(2+) removal and diltiazem, an L-type Ca(2+) channel blocker, similarly dilated cav-1(+/+) and cav-1(-/-) arteries. N(omega)-nitro-l-arginine, an nitric oxide synthase inhibitor, did not restore myogenic tone in cav-1(-/-) arteries. Iberiotoxin, a selective Ca(2+)-activated K(+) (K(Ca)) channel blocker, induced a similar depolarization and constriction in pressurized cav-1(+/+) and cav-1(-/-) arteries. Since pressurized cav-1(-/-) arteries are more hyperpolarized and this effect would reduce K(Ca) current, these data suggest that cav-1 ablation leads to functional K(Ca) channel activation, an effect that should contribute to the attenuated myogenic constriction. In summary, data indicate that cav-1 ablation reduces pressure-induced depolarization and depolarization-induced Ca(2+) influx, and these effects combine to produce a diminished arterial wall [Ca(2+)](i) elevation and constriction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。