GLS2 reduces the occurrence of epilepsy by affecting mitophagy function in mouse hippocampal neurons

GLS2 通过影响小鼠海马神经元的线粒体自噬功能降低癫痫的发生

阅读:5
作者:Yuan Gao, Limin Ma, Jinxian Yuan, Yunyi Huang, Yuenan Ban, Peng Zhang, Dandan Tan, Minxue Liang, Zhipeng Li, Chen Gong, Tao Xu, Xiaolan Yang, Yangmei Chen

Aims

To investigate the expression and distribution characteristics of GLS2 in epilepsy, and then observed the changes in behavior and electrophysiology caused by overexpression of GLS2 in epileptic mice, and determined whether GLS2 regulated seizure-like changes in the mouse model through the protective mechanism of mitophagy.

Background

Altered mitophagy has been observed in various neurological disorders, such as epilepsy. The role of mitophagy in causing neuronal damage during epileptic episodes is significant, and recent research has indicated that GLS2 plays a crucial role in regulating autophagy. However, exactly how GLS2 affects epilepsy is still unclear. Aims: To investigate the expression and distribution characteristics of GLS2 in epilepsy, and then observed the changes in behavior and electrophysiology caused by overexpression of GLS2 in epileptic mice, and determined whether GLS2 regulated seizure-like changes in the mouse model through the protective mechanism of mitophagy.

Conclusions

This study proves the GLS2 expression pattern is abnormal in epileptic mice. The function of mitophagy in hippocampal neurons is affected by GLS2, and overexpression of GLS2 can reduce the occurrence of seizure-like events (SLEs) by altering mitophagy function. Thus, GLS2 might control seizures, and our findings provide a fresh avenue for antiepileptic treatment and offer novel insights into treating and preventing epilepsy.

Results

The expression of GLS2 in a kainic acid (KA)-induced epileptic mouse model and aglutamate-inducedneuronal excitatory damage in HT22 cells model was downregulation. In brief, overexpression of GLS2 can alleviate epileptic activity. Subsequently, we demonstrated that GLS2 interacts with mitophagy-related proteins in a KA-induced epilepsy mouse model. Mechanistically, overexpression of GLS2 inhibited mitophagy in epileptic mice, downregulating the expression of LC3 and reducing ROS production. Conclusions: This study proves the GLS2 expression pattern is abnormal in epileptic mice. The function of mitophagy in hippocampal neurons is affected by GLS2, and overexpression of GLS2 can reduce the occurrence of seizure-like events (SLEs) by altering mitophagy function. Thus, GLS2 might control seizures, and our findings provide a fresh avenue for antiepileptic treatment and offer novel insights into treating and preventing epilepsy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。