Molecular symmetry change of perfluoro-n-alkanes in 'Phase I' monitored by infrared spectroscopy

红外光谱监测“第一阶段”全氟正构烷的分子对称性变化

阅读:8
作者:Taisuke Araki, Takayuki Oka, Nobutaka Shioya, Takeshi Hasegawa

Abstract

Phase diagram of polytetrafluoroethylene (PTFE) comprises four regions. Phases II and IV are characterized by twisted perfluoroalkyl (Rf) chains having different twisting rate of 13/6 and 15/7, respectively, while Phase III is characterized by a planer trans-zigzag molecular skeleton like a normal alkyl chain. These are confirmed by X-ray and electron diffraction and have already been established. Unlike these, Phase I is left an unresolved matter. This phase is complicated indeed and is not symbolized by a single molecular structure. At an ambient pressure, Phase I is the temperature region above 30 ºC (303 K), and the helical molecular structure is supposed to be gradually untwisted with an elevating temperature. This untwisting image is roughly suggested by the diffraction, neutron scattering, and thermal expansion techniques, but the conventional approaches have all experimental limitations because the untwisting accompanies disorder (or defect) in the twist along the chain. To explore the transition between two different helical structures of the Rf chain having disordered structures, vibrational spectroscopic techniques are expected to be an alternative approach. For infrared spectroscopy, for example, the twisting rate of the molecule is simply recognized as a degree of molecular symmetry. Here, we show that the band progression peaks of the CF2 symmetric stretching vibration mode are quite sensitive and useful for pursuing the molecular symmetry change in Phase I for both peak intensity and position using perfluoro-n-alkanes having different chain length covering both even and odd number of the CF2 groups.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。