Development of Methods for Specific Capture of Biological Targets on Aluminum Substrates: Application to Bacillus subtilis Spore Detection as a Model for Anthrax

在铝基质上特异性捕获生物靶标的方法的开发:应用于枯草芽孢杆菌孢子检测作为炭疽病模型

阅读:4
作者:Ethan P Luta, Benjamin L Miller

Abstract

Many (if not most) biosensors rely on functional silane coatings as a first step toward covalent immobilization of specific capture molecules. While methods for silanization of silica (SiO2) surfaces are very well developed, less has been done to develop and characterize silanization methods for alternative substrates, such as alumina (Al2O3). In particular, the behavior of Al2O3 coatings grown on aluminum under ambient conditions has not been studied. To address this issue, we have tested solution-phase deposition of two silanes on Al2O3 (3-aminopropyl triethoxysilane and 3-triethoxysilyl)propylsuccinic anhydride) and their applicability to analyte-specific biosensing. Contact angle measurements and imaging via Scanning Electron Microsopy (SEM) were employed to characterize surfaces. We find that 3-aminopropyl triethoxysilane produces well-behaved films and demonstrate that this surface can undergo further reaction with glutaraldehyde followed by an anti-Bacillus subtilis antibody to yield functionalized Al2O3 surfaces capable of specific capture of B. subtilis spores (a model of B. anthracis, the causative organism of Anthrax). In contrast, 3-triethoxysilyl)propylsuccinic anhydride did not behave well with Al/Al2O3 under the reaction conditions tested. In addition to providing specific protocols for Al/Al2O3 functionalization, this work highlights the importance of surface chemistry assessment in the development of new sensors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。