Effect of flow on targeting and penetration of angiopep-decorated nanoparticles in a microfluidic model blood-brain barrier

流动对血管肽修饰纳米粒子在微流体模型血脑屏障中的靶向性和穿透性的影响

阅读:4
作者:Iason Papademetriou, Else Vedula, Joseph Charest, Tyrone Porter

Abstract

The blood-brain barrier (BBB) limits transport of nanoparticles from the circulation to the brain parenchyma. Angiopep-2, a peptide which functions as a brain transport vector, can be coupled to nanoparticles in order to facilitate binding and internalization by brain endothelial cells (ECs), and subsequent BBB penetration. This multi-step process may be affected by blood flow over brain ECs, as flow influences endothelial cell phenotype as well as interactions of nanoparticles with ECs. In the present study a microfluidic BBB model was constructed to evaluate binding and internalization by brain ECs, as well as BBB penetration of Angiopep-2 coupled liposomes (Ang2-Liposomes) in static and flow conditions. Ang2 conjugation to liposomes markedly improved binding relative to unconjugated liposomes. Ang2-Liposomes bound and were internalized efficiently by brain endothelial cells after static incubation or with 1 dyne/cm2 of fluid shear stress (FSS), while binding was reduced at a FSS of 6 dyne/cm2. Penetration of the model microfluidic BBB by Ang2-Liposomes was higher at a FSS of 1 dyne/cm2 and 6 dyne/cm2 than with static incubation. Analysis of barrier function and control experiments for receptor-mediated penetration provided insight into the magnitude of transcellular versus paracellular transport at each tested FSS. Overall, the results demonstrate that flow impacted the binding and BBB penetration of Ang2-functionalized nanoparticles. This highlights the relevance of the local flow environment for in vitro modeling of the performance of nanoparticles functionalized with BBB penetrating ligands.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。