Abstract
Majority of chronic myeloid leukemia patients experience an adequate therapeutic effect from imatinib however, 26-37% of patients discontinue imatinib therapy due to a suboptimal response or intolerance. Here we investigated derivatives of apoptin, a chicken anemia viral protein with selective toxicity towards cancer cells, which can be directed towards inhibiting multiple hyperactive kinases including BCR-ABL1. Our earlier studies revealed that a proline-rich segment of apoptin interacts with the SH3 domain of fusion protein BCR-ABL1 (p210) and acts as a negative regulator of BCR-ABL1 kinase and its downstream targets. In this study we show for the first time, the therapeutic potential of apoptin-derived decapeptide for the treatment of CML by establishing the minimal region of apoptin interaction domain with BCR-ABL1. We further show that the apoptin decapeptide is able to inhibit BCR-ABL1 down stream target c-Myc with a comparable efficacy to full-length apoptin and Imatinib. The synthetic apoptin is able to inhibit cell proliferation in murine (32Dp210), human cell line (K562), and ex vivo in both imatinib-resistant and imatinib sensitive CML patient samples. The apoptin based single or combination therapy may be an additional option in CML treatment and eventually be feasible as curative therapy.
