CG0009, a novel glycogen synthase kinase 3 inhibitor, induces cell death through cyclin D1 depletion in breast cancer cells

CG0009 是一种新型糖原合酶激酶 3 抑制剂,可通过消耗乳腺癌细胞中的细胞周期蛋白 D1 来诱导细胞死亡

阅读:6
作者:Hyun Mi Kim, Choung-Soo Kim, Je-Hwan Lee, Se Jin Jang, Jung Jin Hwang, Seonggu Ro, Jene Choi

Abstract

Glycogen synthase kinase 3α/β (GSK3α/β) is a constitutively active serine/threonine kinase involved in multiple physiological processes, such as protein synthesis, stem cell maintenance and apoptosis, and acts as a key suppressor of the Wnt-β-catenin pathway. In the present study, we examined the therapeutic potential of a novel GSK3 inhibitor, CG0009, in the breast cancer cell lines, BT549, HS578T, MDA-MB-231, NCI/ADR-RES, T47D, MCF7 and MDA-MB-435, from the NCI-60 cancer cell line panel. Assessment of cytotoxicity, apoptosis and changes in estrogen-signaling proteins was performed using cell viability assays, Western blotting and quantitative real-time PCR. CG0009 enhanced the inactivating phosphorylation of GSK3α at Ser21 and GSK3β at Ser9 and simultaneously decreased activating phosphorylation of GSK3β at Tyr216, and induced caspase-dependent apoptosis independently of estrogen receptor α (ERα) expression status, which was not observed with the other GSK3 inhibitors examined, including SB216763, kenpaullone and LiCl. CG0009 treatment (1 µmol/L) completely ablated cyclin D1 expression in a time-dependent manner in all the cell lines examined, except T47D. CG0009 alone significantly activated p53, leading to relocation of p53 and Bax to the mitochondria. GSK3 inhibition by CG0009 led to slight upregulation of the β-catenin target genes, c-Jun and c-Myc, but not cyclin D1, indicating that CG0009-mediated cyclin D1 depletion overwhelms the pro-survival signal of β-catenin, resulting in cell death. Our findings suggest that the novel GSK3 inhibitor, CG0009, inhibits breast cancer cell growth through cyclin D1 depletion and p53 activation, and may thus offer an innovative therapeutic approach for breast cancers resistant to hormone-based therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。