Steady-state NTPase activity of Dengue virus NS3: number of catalytic sites, nucleotide specificity and activation by ssRNA

登革热病毒 NS3 的稳态 NTPase 活性:催化位点数量、核苷酸特异性和 ssRNA 激活

阅读:9
作者:J Jeremías Incicco, Leopoldo G Gebhard, Rodolfo M González-Lebrero, Andrea V Gamarnik, Sergio B Kaufman

Abstract

Dengue virus nonstructural protein 3 (NS3) unwinds double stranded RNA driven by the free energy derived from the hydrolysis of nucleoside triphosphates. This paper presents the first systematic and quantitative characterization of the steady-state NTPase activity of DENV NS3 and their interaction with ssRNA. Substrate curves for ATP, GTP, CTP and UTP were obtained, and the specificity order for these nucleotides - evaluated as the ratio (kcat /KM )- was GTP[Formula: see text]ATP[Formula: see text]CTP [Formula: see text] UTP, which showed that NS3 have poor ability to discriminate between different NTPs. Competition experiments between the four substrates indicated that all of them are hydrolyzed in one and the same catalytic site of the enzyme. The effect of ssRNA on the ATPase activity of NS3 was studied using poly(A) and poly(C). Both RNA molecules produced a 10 fold increase in the turnover rate constant (kcat ) and a 100 fold decrease in the apparent affinity (KM ) for ATP. When the ratio [RNA bases]/[NS3] was between 0 and [Formula: see text]20 the ATPase activity was inhibited by increasing both poly(A) and poly(C). Using the theory of binding of large ligands (NS3) to a one-dimensional homogeneous lattice of infinite length (RNA) we tested the hypothesis that inhibition is the result of crowding of NS3 molecules along the RNA lattices. Finally, we discuss why this hypothesis is consistent with the idea that the ATPase catalytic cycle is tightly coupled to the movement of NS3 helicase along the RNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。