The putative RNA helicase HELZ promotes cell proliferation, translation initiation and ribosomal protein S6 phosphorylation

假定的 RNA 解旋酶 HELZ 促进细胞增殖、翻译起始和核糖体蛋白 S6 磷酸化

阅读:7
作者:Philippe A Hasgall, David Hoogewijs, Marius B Faza, Vikram G Panse, Roland H Wenger, Gieri Camenisch

Abstract

The hypoxia-inducible transcription factor (HIF) is a key component of the cellular adaptation mechanisms to hypoxic conditions. HIFα subunits are degraded by prolyl-4-hydroxylase domain (PHD) enzyme-dependent prolyl-4-hydroxylation of LxxLAP motifs that confer oxygen-dependent proteolytic degradation. Interestingly, only three non-HIFα proteins contain two conserved LxxLAP motifs, including the putative RNA helicase with a zinc finger domain HELZ. However, HELZ proteolytic regulation was found to be oxygen-independent, supporting the notion that a LxxLAP sequence motif alone is not sufficient for oxygen-dependent protein destruction. Since biochemical pathways involving RNA often require RNA helicases to modulate RNA structure and activity, we used luciferase reporter gene constructs and metabolic labeling to demonstrate that HELZ overexpression activates global protein translation whereas RNA-interference mediated HELZ suppression had the opposite effect. Although HELZ interacted with the poly(A)-binding protein (PABP) via its PAM2 motif, PABP was dispensable for HELZ function in protein translation. Importantly, downregulation of HELZ reduced translational initiation, resulting in the disassembly of polysomes, in a reduction of cell proliferation and hypophosphorylation of ribosomal protein S6.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。