Antidepressants stimulate hippocampal neurogenesis by inhibiting p21 expression in the subgranular zone of the hipppocampus

抗抑郁药通过抑制海马亚颗粒区 p21 的表达来刺激海马神经发生

阅读:8
作者:Robert N Pechnick, Svetlana Zonis, Kolja Wawrowsky, Rosemarie Cosgayon, Catherine Farrokhi, Liliana Lacayo, Vera Chesnokova

Abstract

The relationships among hippocampal neurogenesis, depression and the mechanism of action of antidepressant drugs have generated a considerable amount of controversy. The cyclin-dependent kinase (Cdk) inhibitor p21(Cip1) (p21) plays a crucial role in restraining cellular proliferation and maintaining cellular quiescence. Using in vivo and in vitro approaches the present study shows that p21 is expressed in the subgranular zone of the dentate gyrus of the hippocampus in early neuronal progenitors and in immature neurons, but not in mature neurons or astroglia. In vitro, proliferation is higher in neuronal progenitor cells derived from p21-/- mice compared to cells derived from wild-type mice. Proliferation is increased in neuronal progenitor cells after suppression of p21 using lentivirus expressing short hairpin RNA against p21. In vivo, chronic treatment with the non-selective antidepressant imipramine as well as the norepinephrine-selective reuptake inhibitor desipramine or the serotonin-selective reuptake inhibitor fluoxetine all decrease p21 expression, and this was associated with increased neurogenesis. Chronic antidepressant treatment did not affect the expression of other Cdk inhibitors. Untreated p21-/- mice exhibit a higher degree of baseline neurogenesis and decreased immobility in the forced swim test. Although chronic imipramine treatment increased neurogenesis and reduced immobility in the forced swim test in wild-type mice, it reduced neurogenesis and increased immobility in p21-/- mice. These results demonstrate the unique role of p21 in the control of neurogenesis, and support the hypothesis that different classes of reuptake inhibitor-type antidepressant drugs all stimulate hippocampal neurogenesis by inhibiting p21 expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。