Construction of a prognostic model for ovarian cancer based on a comprehensive bioinformatics analysis of cuproptosis-associated long non-coding RNA signatures

基于杯状凋亡相关长链非编码 RNA 特征的综合生物信息学分析构建卵巢癌预后模型

阅读:6
作者:Rujun Chen, Yating Huang, Ke Sun, Fuyun Dong, Xiaoqin Wang, Junhua Guan, Lina Yang, He Fei

Abstract

Ovarian cancer (OCa) is a common malignancy in women, and the role of cuproptosis and its related genes in OCa is unclear. Using the GSE14407 dataset, we analyzed the expression and correlation of cuproptosis-related genes (CRGs) between tumor and normal groups. From the TCGA-OV dataset, we identified 20 cuproptosis-related long non-coding RNAs (CuLncs) associated with patient survival through univariate Cox analysis. OCa patients were divided into early-stage and late-stage groups to analyze CuLncs expression. Cluster analysis classified patients into two clusters, with Cluster1 having a poorer prognosis. Significant differences in "Lymphatic Invasion" and "Cancer status" were observed between clusters. Seven CRGs showed significant expression differences, validated using the human protein atlas (HPA) databases. Immune analysis revealed a higher ImmuneScore in Cluster1. GSEA identified associated signaling pathways. LASSO regression included 11 CuLncs to construct and validate a survival prediction model, classifying patients into high-risk and low-risk groups. Correlations between riskScore, Cluster phenotype, ImmuneScore, and immune cell infiltration were explored. Cell experiments showed that knocking down AC023644.1 decreases OCa cell viability. In conclusion, we constructed an accurate prognostic model for OCa based on 11 CuLncs, providing a basis for prognosis assessment and potential immunotherapy targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。