The ERβ ligand 5α-androstane, 3β,17β-diol (3β-diol) regulates hypothalamic oxytocin (Oxt) gene expression

ERβ 配体 5α-雄甾烷,3β,17β-二醇 (3β-二醇) 调节下丘脑催产素 (Oxt) 基因表达

阅读:5
作者:Dharmendra Sharma, Robert J Handa, Rosalie M Uht

Abstract

The endocrine component of the stress response is regulated by glucocorticoids and sex steroids. Testosterone down-regulates hypothalamic-pituitary-adrenal (HPA) axis activity; however, the mechanisms by which it does so are poorly understood. A candidate testosterone target is the oxytocin gene (Oxt), given that it too inhibits HPA activity. Within the paraventricular nucleus of the hypothalamus, oxytocinergic neurons involved in regulating the stress response do not express androgen receptors but do express estrogen receptor-β (ERβ), which binds the dihydrotestosterone metabolite 3β,17β-diol (3β-diol). Testosterone regulation of the HPA axis thus appears to involve the conversion to the ERβ-selective ligand 5α-androstane, 3β-diol. To study mechanisms by which 3β-diol could regulate Oxt expression, we used a hypothalamic neuronal cell line derived from embryonic mice that expresses Oxt constitutively and compared 3β-diol with estradiol (E2) effects. E2 and 3β-diol elicited a phasic response in Oxt mRNA levels. In the presence of either ligand, Oxt mRNA levels were increased for at least 60 min and returned to baseline by 2 h. ERβ occupancy preceded an increase in Oxt mRNA levels in the presence of 3β-diol but not E2. In tandem with ERβ occupancy, 3β-diol increased occupancy of the Oxt promoter by cAMP response element-binding protein and steroid receptor coactivator-1 at 30 min. At the same time, 3β-diol led to the increased acetylation of histone H4 but not H3. Taken together, the data suggest that in the presence of 3β-diol, ERβ associates with cAMP response element-binding protein and steroid receptor coactivator-1 to form a functional complex that drives Oxt gene expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。