Genome-wide screen identifies drug-induced regulation of the gene giant axonal neuropathy (Gan) in a mouse model of antiretroviral-induced painful peripheral neuropathy

全基因组筛查确定了抗逆转录病毒诱发的疼痛性周围神经病变小鼠模型中巨轴突神经病变 (Gan) 基因的药物诱导调控

阅读:5
作者:Susan G Dorsey, Carmen C Leitch, Cynthia L Renn, Sherrie Lessans, Barbara A Smith, Xiao M Wang, Raymond A Dionne

Abstract

Painful peripheral neuropathy is a debilitating complication of the treatment of HIV with nucleoside reverse transcriptase inhibitors (NRTIs). Patients are living longer with these drugs; however many develop excruciating, unremitting, and often treatment-limiting neuropathy that is resistant to conventional pain management therapies. Improving patient comfort and quality of life is paramount and depends on a clearer understanding of this devastating side effect. The mechanisms underlying the development of NRTI-induced neuropathy, however, remain unclear. Using a mouse model of NRTI-induced neuropathy, the authors conducted an unbiased whole-genome microarray screen to identify molecular targets in the spinal dorsal horn, which is the location where integration of ascending sensory transmission and descending modulatory effects occur. Analysis of the microarray data identified a change in the gene giant axonal neuropathy 1 (Gan1). Mutation of this gene has been linked to the development of giant axonal neuropathy (GAN), a rare autosomal recessive condition characterized by a progressive sensorimotor neuropathy. Gan1 has not been previously linked to nerve pathologies in other populations. In this study, downregulation of the Gan1 gene and the gene protein product, gigaxonin, was validated via quantitative polymerase chain reaction ([qPCR] gene expression) and Western blot analyses (protein level). Our report is the first to suggest that Gan1 might be a novel molecular target in the development of NRTI-induced peripheral neuropathy with implications for new therapeutic approaches to preventing or reducing a significant side effect of HIV treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。