Airway epithelial specific deletion of Jun-N-terminal kinase 1 attenuates pulmonary fibrosis in two independent mouse models

气道上皮特异性删除 Jun-N 末端激酶 1 可减轻两种独立小鼠模型中的肺纤维化

阅读:4
作者:Jos L van der Velden, John F Alcorn, David G Chapman, Lennart K A Lundblad, Charles G Irvin, Roger J Davis, Kelly Butnor, Yvonne M W Janssen-Heininger

Abstract

The stress-induced kinase, c-Jun-N-terminal kinase 1 (JNK1) has previously been implicated in the pathogenesis of lung fibrosis. However, the exact cell type(s) wherein JNK1 exerts its pro-fibrotic role(s) remained enigmatic. Herein we demonstrate prominent activation of JNK in bronchial epithelia using the mouse models of bleomycin- or AdTGFβ1-induced fibrosis. Furthermore, in lung tissues of patients with idiopathic pulmonary fibrosis (IPF), active JNK was observed in various regions including type I and type II pneumocytes and fibroblasts. No JNK activity was observed in adjacent normal tissue or in normal control tissue. To address the role of epithelial JNK1, we ablated Jnk1 form bronchiolar and alveolar type II epithelial cells using CCSP-directed Cre recombinase-mediated ablation of LoxP-flanked Jnk1 alleles. Our results demonstrate that ablation of Jnk1 from airway epithelia resulted in a strong protection from bleomycin- or adenovirus expressing active transforming growth factor beta-1 (AdTGFβ1)-induced fibrosis. Ablation of the Jnk1 allele at a time when collagen increases were already present showed a reversal of existing increases in collagen content. Epithelial Jnk1 ablation resulted in attenuation of mesenchymal genes and proteins in lung tissue and preserved expression of epithelial genes. Collectively, these data suggest that epithelial JNK1 contributes to the pathogenesis of pulmonary fibrosis. Given the presence of active JNK in lungs from patients with IPF, targeting JNK1 in airway epithelia may represent a potential treatment strategy to combat this devastating disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。